Improved Mechanics

Internal gears translational energy to rotational energy (Entire gear system not shown).

- Drive pair of efficient motor/generators from heel strike
 - Mechanics encapsulated into sole
 - Built into standard running shoe sole
 - 1-cm flex layer (purple) added
- Expect Watt-class output
 - Especially if flywheels on motors

Jeff Hayashida - ME undergraduate thesis project

4/98 JAN

The Electric Bolo

- Saul Griffith (MIT Media Lab)
- Claims approx. 5 Watts...

Applications onboard shoe

- Battery charge
 - Long popular, heating up (Bayshore and Electric Shoe Company plus Texon)
- Podiatry
 - Pressure/gait warning for diabetics with vascular problems and neuropathy
- Active Insoles
- Athletics/Recreation
 - Pedometry, GPS, data logging, sensing...
 - MP3 Players (wireless headphones)?
- BodyNet and TouchTags
- Wireless "cruncher" hub for wearable system

Feasibility from 10 - 250 mW

Expressive Footwear

17 Data Channels

- 2-axis tilt sensor
- 3-axis compass
- 1-axis rate gyro
- 3-axis shock sensor
- Height sensor (EFS)
- Sonar receiver
- 1 PVDF strip (sole)
- 3 FSR pressure tabs (sole)
- Bend sensor (sole)
- 3 Volt Battery Reference
- Battery low detect
- 20 kb/sec wireless
- 413 & 433 MHZ
- PIC 16C711
- 50 Hz updates from each foot.
- ~ 50 mA draw
 - Half day or more of life

Multisensor Data

- Podiatric Medical Therapy
- Sports Training/Therapy
- Dance Training
- Expression!!

4/98

Applications...

MIT Wearables 97 NICOGRAPH 98 Tokyo Toy Fair 99 Dancer

Gymnast

Juggler

ADF 99 Byron Suber

SENS@BLES 99 Mark Haim

http://www.media.mit.edu/resenv/danceshoe.html

Pedometry and Data Logging

- Simple accelerometer and lightweight processor on shoe
 - Infer and log basic kinematics and dynamics
 - Becomes a .com business!
 - GPS someday (Mike Hawley's ski's)
- Reebok Traxtar, PedInc, etc.

Pressure and Balance

Recreation

www.clevemed.com

Medical

Active Insoles

- Senses running or walking
- Adjusts air bladder response accordingly
- www.VectraSense.com
 - Ron Demon, MIT/LCS (ML alum) spinoff

PAN Touch Communication

Note: PAN transceiver can be embedded in PC keyboard

The PAN Handshake

Off the Shoe - Smart Wardrobe

The MIT Media Lab Cyborgs, 1995

4/98

Fashion Shows

- *MIT October 1997*
- CalArts February 1998
- Tokyo November 1998

Wires in Clothing

- Stiching or wires in fabric pockets?
 - Spotweld to chips on fabric
- Snap connectors, conductive velcro

Rehmi Post, Maggie Orth

4/98 JAP

Human-Powered Electronics - The Endpoint?

The Matrix, film by the Wachowski Brothers, United Artists 1999

- We are dim bulbs...
 - A resting human dissipates about 100 Watts

They will use us in more creative ways...

References

http://www.media.mit.edu/resenv/papers.html

- Parasitic Power Harvesting in Shoes John Kymisis,
 Clyde Kendall, Joseph Paradiso, and Neil Gershenfeld.
 Proc. of the Second IEEE International
- Conference on Wearable Computing, (ISWC), IEEE Computer Society Press, pp. 132-139, October 1998.
- Clyde Jake Kendall -- Parasitic Power Collection in Shoe-Mounted Devices (pdf) June 1998.
- Nathan S. Shenck -- A Demonstration of Useful Electric Energy Generation from Piezoceramics in a Shoe (pdf) May 1999.